Source code for dendropy.datamodel.treecollectionmodel

#! /usr/bin/env python

##############################################################################
##  DendroPy Phylogenetic Computing Library.
##
##  Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
##  All rights reserved.
##
##  See "LICENSE.rst" for terms and conditions of usage.
##
##  If you use this work or any portion thereof in published work,
##  please cite it as:
##
##     Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
##     for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################

"""
This module handles the core definition of classes that model collections of
trees.
"""

import collections
import math
import copy
import sys
from dendropy.utility import container
from dendropy.utility import error
from dendropy.utility import bitprocessing
from dendropy.utility import deprecate
from dendropy.utility import constants
from dendropy.calculate import statistics
from dendropy.datamodel import basemodel
from dendropy.datamodel import taxonmodel
from dendropy.datamodel import treemodel
from dendropy import dataio

##############################################################################
### TreeList

[docs]class TreeList( taxonmodel.TaxonNamespaceAssociated, basemodel.Annotable, basemodel.Deserializable, basemodel.MultiReadable, basemodel.Serializable, basemodel.DataObject): """ A collection of |Tree| objects, all referencing the same "universe" of opeational taxonomic unit concepts through the same |TaxonNamespace| object reference. """ def _parse_and_create_from_stream(cls, stream, schema, collection_offset=None, tree_offset=None, **kwargs): """ Constructs a new |TreeList| object and populates it with trees from file-like object ``stream``. Notes ----- *All* operational taxonomic unit concepts in the data source will be included in the |TaxonNamespace| object associated with the new |TreeList| object and its contained |Tree| objects, even those not associated with trees or the particular trees being retrieved. Parameters ---------- stream : file or file-like object Source of data. schema : string Identifier of format of data in ``stream`` collection_offset : integer or None 0-based index indicating collection of trees to parse. If |None|, then all tree collections are retrieved, with each distinct collection parsed into a separate |TreeList| object. If the tree colleciton offset index is equal or greater than the number of tree collections in the data source, then IndexError is raised. Negative offsets work like negative list indexes; e.g., a ``collection_offset`` of -1 means to read the last collection of trees in the data source. For data formats that do not support the concept of distinct tree collections (e.g. NEWICK) are considered single-collection data source (i.e, the only acceptable ``collection_offset`` values are -1 or 0). tree_offset : integer or None 0-based index indicating particular tree within a particular collection of trees at which to begin reading. If not specified or |None| (default), then all trees are parsed. Otherwise, must be an integer value up the length of the collection minus 1. A positive offset indicates the number of trees in the collection to skip; e.g. a ``tree_offset`` of 20 means to skip the first 20 trees in the collection. Negative offsets work like negative list indexes; e.g., a ``tree_offset`` value of -10 means to retrieve the last 10 trees in the collection. If the tree offset index is equal or greater than the number of trees in the collection, then IndexError is raised. Requires that a particular tree collection has been identified using the ``tree_collection_offset`` parameter: if ``tree_collection_offset`` is not specified, a TypeError is raised. \*\*kwargs : keyword arguments Arguments to customize parsing, instantiation, processing, and accession of |Tree| objects read from the data source, including schema- or format-specific handling. The following optional keyword arguments are recognized and handled by this function: * ``label`` Specifies the label or description of the new |TreeList|. * ``taxon_namespace`` specifies the |TaxonNamespace| object to be attached to the new |TreeList| object. Note that *all* operational taxonomic unit concepts in the data source will be accessioned into the specified |TaxonNamespace| instance. This includes the operation taxonomic unit definitions associated with all tree collections and character matrices in the data source. * ``tree_list`` : **SPECIAL** If passed a |TreeList| using this keyword, then this instance is populated and returned (instead of a new instance being created). All other keyword arguments are passed directly to |TreeList|.read()`. Other keyword arguments may be available, depending on the implementation of the reader specialized to handle ``schema`` formats. Notes ----- Note that in most cases, even if ``collection_offset`` and ``tree_offset`` are specified to restrict the trees returned, the *entire* data source is still parsed and processed. So this is not more efficient than reading all the trees and then manually-extracting them later; just more convenient. If you need just a single subset of trees from a data source, there is no gain in efficiency. If you need multiple trees or subsets of trees from the same data source, it would be much more efficient to read the entire data source, and extract trees as needed. Returns ------- A |TreeList| object. """ # these must be pulled before passing the kwargs # down to the reader tree_list = kwargs.pop("tree_list", None) taxon_namespace = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, None) label = kwargs.pop("label", None) # get the reader reader = dataio.get_reader(schema, **kwargs) # Accommodate an existing TreeList object being passed if tree_list is None: tree_list = cls(label=label, taxon_namespace=taxon_namespace) if collection_offset is None and tree_offset is not None: collection_offset = 0 if collection_offset is None: # if tree_offset is not None: # raise TypeError("Cannot specify ``tree_offset`` without specifying ``collection_offset``") # coerce all tree products into this list reader.read_tree_lists( stream=stream, taxon_namespace_factory=tree_list._taxon_namespace_pseudofactory, tree_list_factory=tree_list._tree_list_pseudofactory, global_annotations_target=None) else: tree_lists = reader.read_tree_lists( stream=stream, taxon_namespace_factory=tree_list._taxon_namespace_pseudofactory, tree_list_factory=tree_list.__class__, global_annotations_target=None) # if collection_offset < 0: # raise IndexError("Collection offset out of range: {} (minimum valid tree offset = 0)".format(collection_offset)) if collection_offset >= len(tree_lists): raise IndexError("Collection offset out of range: {} (number of collections = {}, maximum valid collection offset = {})".format(collection_offset, len(tree_lists), len(tree_lists)-1)) target_tree_list = tree_lists[collection_offset] tree_list.copy_annotations_from(target_tree_list) if tree_offset is not None: # if tree_offset < 0: # raise IndexError("Tree offset out of range: {} (minimum offset = 0)".format(tree_offset)) if tree_offset >= len(target_tree_list): raise IndexError("Tree offset out of range: {} (number of trees in source = {}, maximum valid tree offset = {})".format(tree_offset, len(target_tree_list), len(target_tree_list)-1)) for tree in target_tree_list[tree_offset:]: tree_list._trees.append(tree) else: for tree in target_tree_list: tree_list._trees.append(tree) return tree_list # taxon_namespace = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, None) # label = kwargs.pop("label", None) # tree_list = cls(label=label, # taxon_namespace=taxon_namespace) # tree_list.read( # stream=stream, # schema=schema, # collection_offset=collection_offset, # tree_offset=tree_offset, # **kwargs) # return tree_list _parse_and_create_from_stream = classmethod(_parse_and_create_from_stream) @classmethod
[docs] def get(cls, **kwargs): """ Instantiate and return a *new* |TreeList| object from a data source. **Mandatory Source-Specification Keyword Argument (Exactly One Required):** - **file** (*file*) -- File or file-like object of data opened for reading. - **path** (*str*) -- Path to file of data. - **url** (*str*) -- URL of data. - **data** (*str*) -- Data given directly. **Mandatory Schema-Specification Keyword Argument:** - **schema** (*str*) -- Identifier of format of data given by the "``file``", "``path``", "``data``", or "``url``" argument specified above: ":doc:`newick </schemas/newick>`", ":doc:`nexus </schemas/nexus>`", or ":doc:`nexml </schemas/nexml>`". See "|Schemas|" for more details. **Optional General Keyword Arguments:** - **label** (*str*) -- Name or identifier to be assigned to the new object; if not given, will be assigned the one specified in the data source, or |None| otherwise. - **taxon_namespace** (|TaxonNamespace|) -- The |TaxonNamespace| instance to use to :doc:`manage the taxon names </primer/taxa>`. If not specified, a new one will be created. - **collection_offset** (*int*) -- 0-based index of tree block or collection in source to be parsed. If not specified then the first collection (offset = 0) is assumed. - **tree_offset** (*int*) -- 0-based index of first tree within the collection specified by ``collection_offset`` to be parsed (i.e., skipping the first ``tree_offset`` trees). If not specified, then the first tree (offset = 0) is assumed (i.e., no trees within the specified collection will be skipped). Use this to specify, e.g. a burn-in. - **ignore_unrecognized_keyword_arguments** (*bool*) -- If |True|, then unsupported or unrecognized keyword arguments will not result in an error. Default is |False|: unsupported keyword arguments will result in an error. **Optional Schema-Specific Keyword Arguments:** These provide control over how the data is interpreted and processed, and supported argument names and values depend on the schema as specified by the value passed as the "``schema``" argument. See "|Schemas|" for more details. **Examples:** :: tlst1 = dendropy.TreeList.get( file=open('treefile.tre', 'rU'), schema="newick") tlst2 = dendropy.TreeList.get( path='sometrees.nexus', schema="nexus", collection_offset=2, tree_offset=100) tlst3 = dendropy.TreeList.get( data="((A,B),(C,D));((A,C),(B,D));", schema="newick") tree4 = dendropy.dendropy.TreeList.get( url="http://api.opentreeoflife.org/v2/study/pg_1144/tree/tree2324.nex", schema="nexus") """ return cls._get_from(**kwargs)
DEFAULT_TREE_TYPE = treemodel.Tree
[docs] def tree_factory(cls, *args, **kwargs): """ Creates and returns a |Tree| of a type that this list understands how to manage. Deriving classes can override this to provide for custom Tree-type object lists. You can simple override the class-level variable `DEFAULT_TREE_TYPE` in your derived class if the constructor signature of the alternate tree type is the same as |Tree|. If you want to have a TreeList *instance* that generates custom trees (i.e., as opposed to a TreeList-ish *class* of instances), set the ``tree_type`` attribute of the TreeList instance. Parameters ---------- \*args : positional arguments Passed directly to constructor of |Tree|. \*\*kwargs : keyword arguments Passed directly to constructor of |Tree|. Returns ------- A |Tree| object. """ tree = cls.DEFAULT_TREE_TYPE(*args, **kwargs) return tree
tree_factory = classmethod(tree_factory) ########################################################################### ### Lifecycle and Identity def __init__(self, *args, **kwargs): """ Constructs a new |TreeList| object, populating it with any iterable container with Tree object members passed as unnamed argument, or from a data source if ``stream`` and ``schema`` are passed. If passed an iterable container, the objects in that container must be of type |Tree| (or derived). If the container is of type |TreeList|, then, because each |Tree| object must have the same |TaxonNamespace| reference as the containing |TreeList|, the trees in the container passed as an initialization argument will be **deep**-copied (except for associated |TaxonNamespace| and |Taxon| objects, which will be shallow-copied). If the container is any other type of iterable, then the |Tree| objects will be **shallow**-copied. |TreeList| objects can directly thus be instantiated in the following ways:: # /usr/bin/env python from dendropy import TaxonNamespace, Tree, TreeList # instantiate an empty tree tlst1 = TreeList() # TreeList objects can be instantiated from an external data source # using the 'get()' factory class method tlst2 = TreeList.get(file=open('treefile.tre', 'rU'), schema="newick") tlst3 = TreeList.get(path='sometrees.nexus', schema="nexus") tlst4 = TreeList.get(data="((A,B),(C,D));((A,C),(B,D));", schema="newick") # can also call `read()` on a TreeList object; each read adds # (appends) the tree(s) found to the TreeList tlst5 = TreeList() tlst5.read(file=open('boot1.tre', 'rU'), schema="newick") tlst5.read(path="boot3.tre", schema="newick") tlst5.read(value="((A,B),(C,D));((A,C),(B,D));", schema="newick") # populated from list of Tree objects tlist6_1 = Tree.get( data="((A,B),(C,D))", schema="newick") tlist6_2 = Tree.get( data="((A,C),(B,D))", schema="newick") tlist6 = TreeList([tlist5_1, tlist5_2]) # passing keywords to underlying tree parser tlst8 = TreeList.get( data="((A,B),(C,D));((A,C),(B,D));", schema="newick", taxon_namespace=tlst3.taxon_namespace, rooting="force-rooted", extract_comment_metadata=True, store_tree_weights=False, preserve_underscores=True) # Subsets of trees can be read. Note that in most cases, the entire # data source is parsed, so this is not more efficient than reading # all the trees and then manually-extracting them later; just more # convenient # skip the *first* 100 trees in the *first* (offset=0) collection of trees trees = TreeList.get( path="mcmc.tre", schema="newick", collection_offset=0, tree_offset=100) # get the *last* 10 trees in the *second* (offset=1) collection of trees trees = TreeList.get( path="mcmc.tre", schema="newick", collection_offset=1, tree_offset=-10) # get the last 10 trees in the second-to-last collection of trees trees = TreeList.get( path="mcmc.tre", schema="newick", collection_offset=-2, tree_offset=100) # Slices give shallow-copy: trees are references tlst4copy0a = t4[:] assert tlst4copy0a[0] is t4[0] tlst4copy0b = t4[:4] assert tlst4copy0b[0] is t4[0] # 'Taxon-namespace-scoped' copy: # I.e., Deep-copied objects but taxa and taxon namespace # are copied as references tlst4copy1a = TreeList(t4) tlst4copy1b = TreeList([Tree(t) for t in tlst5]) assert tlst4copy1a[0] is not tlst4[0] # True assert tlst4copy1a.taxon_namespace is tlst4.taxon_namespace # True assert tlst4copy1b[0] is not tlst4[0] # True assert tlst4copy1b.taxon_namespace is tlst4.taxon_namespace # True """ if len(args) > 1: # only allow 1 positional argument raise error.TooManyArgumentsError(func_name=self.__class__.__name__, max_args=1, args=args) elif len(args) == 1 and isinstance(args[0], TreeList): self._clone_from(args[0], kwargs) else: basemodel.DataObject.__init__(self, label=kwargs.pop("label", None)) taxonmodel.TaxonNamespaceAssociated.__init__(self, taxon_namespace=taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, None)) self.tree_type = kwargs.pop("tree_type", self.__class__.DEFAULT_TREE_TYPE) self._trees = [] self.comments = [] if len(args) == 1: for aidx, a in enumerate(args[0]): if not isinstance(a, self.tree_type): raise ValueError("Cannot add object not of 'Tree' type to 'TreeList'") self.append(a) if kwargs: raise TypeError("Unrecognized or unsupported arguments: {}".format(kwargs)) def __hash__(self): return id(self) def __eq__(self, other): return ( isinstance(other, TreeList) and (self.taxon_namespace is other.taxon_namespace) and (self._trees == other._trees) ) def _clone_from(self, tree_list, kwargs_dict): memo = {} # memo[id(tree)] = self taxon_namespace = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs_dict, tree_list.taxon_namespace) memo[id(tree_list.taxon_namespace)] = taxon_namespace if taxon_namespace is not tree_list.taxon_namespace: for t1 in tree_list.taxon_namespace: t2 = taxon_namespace.require_taxon(label=t1.label) memo[id(t1)] = t2 else: for t1 in tree_list.taxon_namespace: memo[id(t1)] = t1 t = copy.deepcopy(tree_list, memo) self.__dict__ = t.__dict__ self.label = kwargs_dict.pop("label", tree_list.label) return self def __copy__(self): other = TreeList(label=self.label, taxon_namespace=self.taxon_namespace) other._trees = list(self._trees) memo = {} memo[id(self)] = other other.deep_copy_annotations_from(self, memo) return other def taxon_namespace_scoped_copy(self, memo=None): if memo is None: memo = {} # this populates ``memo`` with references to the # the TaxonNamespace and Taxon objects self.taxon_namespace.populate_memo_for_taxon_namespace_scoped_copy(memo) return self.__deepcopy__(memo=memo) def __deepcopy__(self, memo=None): return basemodel.Annotable.__deepcopy__(self, memo=memo) ########################################################################### ### Representation def __str__(self): return "<TreeList {} '{}': [{}]>".format(hex(id(self)), self.label, ", ".join(repr(i) for i in self._trees)) ########################################################################### ### Data I/O def _taxon_namespace_pseudofactory(self, **kwargs): """ Dummy factory to coerce all |TaxonNamespace| objects required when parsing a data source to reference ``self.taxon_namespace``. """ if "label" in kwargs and kwargs["label"] is not None and self.taxon_namespace.label is None: self.taxon_namespace.label = kwargs["label"] return self.taxon_namespace def _tree_list_pseudofactory(self, **kwargs): """ Dummy factory to coerce all |TreeList| objects required when parsing a data source to reference ``self``. """ if "label" in kwargs and kwargs["label"] is not None and self.label is None: self.label = kwargs["label"] return self def _parse_and_add_from_stream(self, stream, schema, collection_offset=None, tree_offset=None, **kwargs): """ Parses |Tree| objects from data source and adds to this collection. Notes ----- *All* operational taxonomic unit concepts in the data source will be included in the |TaxonNamespace| object associated with the new |TreeList| object and its contained |Tree| objects, even those not associated with trees or the particular trees being retrieved. Parameters ---------- stream : file or file-like object Source of data. schema : string Identifier of format of data in ``stream``. collection_offset : integer or None 0-based index indicating collection of trees to parse. If |None|, then all tree collections are retrieved, with each distinct collection parsed into a separate |TreeList| object. If the tree colleciton offset index is equal or greater than the number of tree collections in the data source, then IndexError is raised. Negative offsets work like negative list indexes; e.g., a ``collection_offset`` of -1 means to read the last collection of trees in the data source. For data formats that do not support the concept of distinct tree collections (e.g. NEWICK) are considered single-collection data source (i.e, the only acceptable ``collection_offset`` values are -1 or 0). tree_offset : integer or None 0-based index indicating particular tree within a particular collection of trees at which to begin reading. If not specified or |None| (default), then all trees are parsed. Otherwise, must be an integer value up the length of the collection minus 1. A positive offset indicates the number of trees in the collection to skip; e.g. a ``tree_offset`` of 20 means to skip the first 20 trees in the collection. Negative offsets work like negative list indexes; e.g., a ``tree_offset`` value of -10 means to retrieve the last 10 trees in the collection. If the tree offset index is equal or greater than the number of trees in the collection, then IndexError is raised. Requires that a particular tree collection has been identified using the ``tree_collection_offset`` parameter: if ``tree_collection_offset`` is not specified, a TypeError is raised. \*\*kwargs : keyword arguments Arguments to customize parsing, instantiation, processing, and accession of |Tree| objects read from the data source, including schema- or format-specific handling. These will be passed to the underlying schema-specific reader for handling. General (schema-agnostic) keyword arguments are: * ``rooted`` specifies the default rooting interpretation of the tree. * ``edge_length_type`` specifies the type of the edge lengths (int or float; defaults to 'float') Other keyword arguments are available depending on the schema. See specific schema handlers (e.g., `NewickReader`, `NexusReader`, `NexmlReader`) for more details. Notes ----- Note that in most cases, even if ``collection_offset`` and ``tree_offset`` are specified to restrict the trees read, the *entire* data source is still parsed and processed. So this is not more efficient than reading all the trees and then manually-extracting them later; just more convenient. If you need just a single subset of trees from a data source, there is no gain in efficiency. If you need multiple trees or subsets of trees from the same data source, it would be much more efficient to read the entire data source, and extract trees as needed. Returns ------- n : ``int`` The number of |Tree| objects read. """ if "taxon_namespace" in kwargs and kwargs['taxon_namespace'] is not self.taxon_namespace: raise TypeError("Cannot change ``taxon_namespace`` when reading into an existing TreeList") kwargs["taxon_namespace"] = self.taxon_namespace kwargs["tree_list"] = self cur_size = len(self._trees) TreeList._parse_and_create_from_stream( stream=stream, schema=schema, collection_offset=collection_offset, tree_offset=tree_offset, **kwargs) new_size = len(self._trees) return new_size - cur_size
[docs] def read(self, **kwargs): """ Add |Tree| objects to existing |TreeList| from data source providing one or more collections of trees. **Mandatory Source-Specification Keyword Argument (Exactly One Required):** - **file** (*file*) -- File or file-like object of data opened for reading. - **path** (*str*) -- Path to file of data. - **url** (*str*) -- URL of data. - **data** (*str*) -- Data given directly. **Mandatory Schema-Specification Keyword Argument:** - **schema** (*str*) -- Identifier of format of data given by the "``file``", "``path``", "``data``", or "``url``" argument specified above: ":doc:`newick </schemas/newick>`", ":doc:`nexus </schemas/nexus>`", or ":doc:`nexml </schemas/nexml>`". See "|Schemas|" for more details. **Optional General Keyword Arguments:** - **collection_offset** (*int*) -- 0-based index of tree block or collection in source to be parsed. If not specified then the first collection (offset = 0) is assumed. - **tree_offset** (*int*) -- 0-based index of first tree within the collection specified by ``collection_offset`` to be parsed (i.e., skipping the first ``tree_offset`` trees). If not specified, then the first tree (offset = 0) is assumed (i.e., no trees within the specified collection will be skipped). Use this to specify, e.g. a burn-in. - **ignore_unrecognized_keyword_arguments** (*bool*) -- If |True|, then unsupported or unrecognized keyword arguments will not result in an error. Default is |False|: unsupported keyword arguments will result in an error. **Optional Schema-Specific Keyword Arguments:** These provide control over how the data is interpreted and processed, and supported argument names and values depend on the schema as specified by the value passed as the "``schema``" argument. See "|Schemas|" for more details. **Examples:** :: tlist = dendropy.TreeList() tlist.read( file=open('treefile.tre', 'rU'), schema="newick", tree_offset=100) tlist.read( path='sometrees.nexus', schema="nexus", collection_offset=2, tree_offset=100) tlist.read( data="((A,B),(C,D));((A,C),(B,D));", schema="newick") tlist.read( url="http://api.opentreeoflife.org/v2/study/pg_1144/tree/tree2324.nex", schema="nexus") """ return basemodel.MultiReadable._read_from(self, **kwargs)
def _format_and_write_to_stream(self, stream, schema, **kwargs): """ Writes out ``self`` in ``schema`` format to a destination given by file-like object ``stream``. Parameters ---------- stream : file or file-like object Destination for data. schema : string Must be a recognized and tree file schema, such as "nexus", "newick", etc, for which a specialized tree list writer is available. If this is not implemented for the schema specified, then a UnsupportedSchemaError is raised. \*\*kwargs : keyword arguments, optional Keyword arguments will be passed directly to the writer for the specified schema. See documentation for details on keyword arguments supported by writers of various schemas. """ writer = dataio.get_writer(schema, **kwargs) writer.write_tree_list(self, stream) ########################################################################### ### List Interface def _import_tree_to_taxon_namespace(self, tree, taxon_import_strategy="migrate", **kwargs): if tree.taxon_namespace is not self.taxon_namespace: if taxon_import_strategy == "migrate": tree.migrate_taxon_namespace(taxon_namespace=self.taxon_namespace, **kwargs) elif taxon_import_strategy == "add": tree._taxon_namespace = self.taxon_namespace tree.update_taxon_namespace() else: raise ValueError("Unrecognized taxon import strategy: '{}'".format(taxon_import_strategy)) # assert tree.taxon_namespace is self.taxon_namespace return tree
[docs] def insert(self, index, tree, taxon_import_strategy="migrate", **kwargs): """ Inserts a |Tree| object, ``tree``, into the collection before ``index``. The |TaxonNamespace| reference of ``tree`` will be set to that of ``self``. Any |Taxon| objects associated with nodes in ``tree`` that are not already in ``self.taxon_namespace`` will be handled according to ``taxon_import_strategy``: - 'migrate' |Taxon| objects associated with ``tree`` that are not already in ``self.taxon_nameaspace`` will be remapped based on their labels, with new :class|Taxon| objects being reconstructed if none with matching labels are found. Specifically, :meth:`dendropy.datamodel.treemodel.Tree.migrate_taxon_namespace()` will be called on ``tree``, where ``kwargs`` is as passed to this function. - 'add' |Taxon| objects associated with ``tree`` that are not already in ``self.taxon_namespace`` will be added. Note that this might result in |Taxon| objects with duplicate labels as no attempt at mapping to existing |Taxon| objects based on label-matching is done. Parameters ---------- index : integer Position before which to insert ``tree``. tree : A |Tree| instance The |Tree| object to be added. taxon_import_strategy : string If ``tree`` is associated with a different |TaxonNamespace|, this argument determines how new |Taxon| objects in ``tree`` are handled: 'migrate' or 'add'. See above for details. \*\*kwargs : keyword arguments These arguments will be passed directly to 'migrate_taxon_namespace()' method call on ``tree``. See Also -------- :meth:`Tree.migrate_taxon_namespace` """ self._import_tree_to_taxon_namespace( tree=tree, taxon_import_strategy=taxon_import_strategy, **kwargs) self._trees.insert(index, tree)
[docs] def append(self, tree, taxon_import_strategy="migrate", **kwargs): """ Adds a |Tree| object, ``tree``, to the collection. The |TaxonNamespace| reference of ``tree`` will be set to that of ``self``. Any |Taxon| objects associated with nodes in ``tree`` that are not already in ``self.taxon_namespace`` will be handled according to ``taxon_import_strategy``: - 'migrate' |Taxon| objects associated with ``tree`` that are not already in ``self.taxon_nameaspace`` will be remapped based on their labels, with new :class|Taxon| objects being reconstructed if none with matching labels are found. Specifically, :meth:`dendropy.datamodel.treemodel.Tree.migrate_taxon_namespace()` will be called on ``tree``, where ``kwargs`` is as passed to this function. - 'add' |Taxon| objects associated with ``tree`` that are not already in ``self.taxon_namespace`` will be added. Note that this might result in |Taxon| objects with duplicate labels as no attempt at mapping to existing |Taxon| objects based on label-matching is done. Parameters ---------- tree : A |Tree| instance The |Tree| object to be added. taxon_import_strategy : string If ``tree`` is associated with a different |TaxonNamespace|, this argument determines how new |Taxon| objects in ``tree`` are handled: 'migrate' or 'add'. See above for details. \*\*kwargs : keyword arguments These arguments will be passed directly to 'migrate_taxon_namespace()' method call on ``tree``. See Also -------- :meth:`Tree.migrate_taxon_namespace` """ self._import_tree_to_taxon_namespace( tree=tree, taxon_import_strategy=taxon_import_strategy, **kwargs) self._trees.append(tree)
[docs] def extend(self, other): """ In-place addition of |Tree| objects in ``other`` to ``self``. If ``other`` is a |TreeList|, then the trees are *copied* and migrated into ``self.taxon_namespace``; otherwise, the original objects are migrated into ``self.taxon_namespace`` and added directly. Parameters ---------- other : iterable of |Tree| objects Returns ------- ``self`` : |TreeList| """ if isinstance(other, TreeList): for t0 in other: t1 = self.tree_type(t0, taxon_namespace=self.taxon_namespace) self._trees.append(t1) else: for t0 in other: self.append(t0) return self
[docs] def __iadd__(self, other): """ In-place addition of |Tree| objects in ``other`` to ``self``. If ``other`` is a |TreeList|, then the trees are *copied* and migrated into ``self.taxon_namespace``; otherwise, the original objects are migrated into ``self.taxon_namespace`` and added directly. Parameters ---------- other : iterable of |Tree| objects Returns ------- ``self`` : |TreeList| """ return self.extend(other)
[docs] def __add__(self, other): """ Creates and returns new |TreeList| with clones of all trees in ``self`` as well as all |Tree| objects in ``other``. If ``other`` is a |TreeList|, then the trees are *cloned* and migrated into ``self.taxon_namespace``; otherwise, the original objects are migrated into ``self.taxon_namespace`` and added directly. Parameters ---------- other : iterable of |Tree| objects Returns ------- tlist : |TreeList| object |TreeList| object containing clones of |Tree| objects in ``self`` and ``other``. """ tlist = TreeList(taxon_namespace=self.taxon_namespace) tlist += self tlist += other return tlist
def __contains__(self, tree): return tree in self._trees def __delitem__(self, tree): del self._trees[tree] def __iter__(self): return iter(self._trees) def __reversed__(self): return reversed(self._trees) def __len__(self): return len(self._trees)
[docs] def __getitem__(self, index): """ If ``index`` is an integer, then |Tree| object at position ``index`` is returned. If ``index`` is a slice, then a |TreeList| is returned with references (i.e., not copies or clones, but the actual original instances themselves) to |Tree| objects in the positions given by the slice. The |TaxonNamespace| is the same as ``self``. Parameters ---------- index : integer or slice Index or slice. Returns ------- t : |Tree| object or |TreeList| object """ if isinstance(index, slice): r = self._trees[index] return TreeList(r, taxon_namespace=self.taxon_namespace) else: return self._trees[index]
def __setitem__(self, index, value): if isinstance(index, slice): if isinstance(value, TreeList): tt = [] for t0 in value: t1 = self.tree_type(t0, taxon_namespace=self.taxon_namespace) tt.append(t1) value = tt else: for t in value: self._import_tree_to_taxon_namespace(t) self._trees[index] = value else: self._trees[index] = self._import_tree_to_taxon_namespace(value) def clear(self): # list.clear() only with 3.4 or so ... self._trees = [] def index(self, tree): return self._trees.index(tree) def pop(self, index=-1): return self._trees.pop(index) def remove(self, tree): self._trees.remove(tree) def reverse(self): self._trees.reverse() def sort(self, key=None, reverse=False): self._trees.sort(key=key, reverse=reverse) def new_tree(self, *args, **kwargs): tns = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, self.taxon_namespace) if tns is not self.taxon_namespace: raise TypeError("Cannot create new Tree with different TaxonNamespace") kwargs["taxon_namespace"] = self.taxon_namespace if self.tree_type is not None: tree = self.tree_type(*args, **kwargs) else: tree = self.tree_factory(*args, **kwargs) self._trees.append(tree) return tree ############################################################################## ## Taxon Handling def reconstruct_taxon_namespace(self, unify_taxa_by_label=True, taxon_mapping_memo=None): if taxon_mapping_memo is None: taxon_mapping_memo = {} for tree in self._trees: tree._taxon_namespace = self.taxon_namespace tree.reconstruct_taxon_namespace( unify_taxa_by_label=unify_taxa_by_label, taxon_mapping_memo=taxon_mapping_memo, ) def update_taxon_namespace(self): for tree in self._trees: tree._taxon_namespace = self.taxon_namespace tree.update_taxon_namespace()
[docs] def poll_taxa(self, taxa=None): """ Returns a set populated with all of |Taxon| instances associated with ``self``. Parameters ---------- taxa : set() Set to populate. If not specified, a new one will be created. Returns ------- taxa : set[|Taxon|] Set of taxa associated with ``self``. """ if taxa is None: taxa = set() for tree in self: tree.poll_taxa(taxa) return taxa
def reindex_subcomponent_taxa(): raise NotImplementedError() ############################################################################## ## Special Calculations and Operations on Entire Collection def _get_tree_array(self, kwargs_dict, ): """ Return TreeArray containing information of trees currently in self. Processes ``kwargs_dict`` intelligently: removing and passing on keyword arguments pertaining to TreeArray construction, and leaving everything else. """ # TODO: maybe ignore_node_ages defaults to |False| but ``ultrametricity_precision`` defaults to 0? ta = TreeArray.from_tree_list( trees=self, # taxon_namespace=self.taxon_namespace, is_rooted_trees=kwargs_dict.pop("is_rooted_trees", None), ignore_edge_lengths=kwargs_dict.pop("ignore_edge_lengths", False), ignore_node_ages=kwargs_dict.pop("ignore_node_ages", True), use_tree_weights=kwargs_dict.pop("use_tree_weights", True), ultrametricity_precision=kwargs_dict.pop("ultrametricity_precision", constants.DEFAULT_ULTRAMETRICITY_PRECISION), is_force_max_age=kwargs_dict.pop("is_force_max_age", None), taxon_label_age_map=kwargs_dict.pop("taxon_label_age_map", None), is_bipartitions_updated=kwargs_dict.pop("is_bipartitions_updated", False) ) return ta
[docs] def split_distribution(self, is_bipartitions_updated=False, default_edge_length_value=None, **kwargs): """ Return `SplitDistribution` collecting information on splits in contained trees. Keyword arguments get passed directly to `SplitDistribution` constructor. """ assert "taxon_namespace" not in kwargs or kwargs["taxon_namespace"] is self.taxon_namespace kwargs["taxon_namespace"] = self.taxon_namespace sd = SplitDistribution(**kwargs) for tree in self: sd.count_splits_on_tree( tree=tree, is_bipartitions_updated=is_bipartitions_updated, default_edge_length_value=default_edge_length_value) return sd
[docs] def as_tree_array(self, **kwargs): """ Return |TreeArray| collecting information on splits in contained trees. Keyword arguments get passed directly to |TreeArray| constructor. """ ta = TreeArray.from_tree_list( trees=self, **kwargs) return ta
[docs] def consensus(self, min_freq=constants.GREATER_THAN_HALF, is_bipartitions_updated=False, summarize_splits=True, **kwargs): """ Returns a consensus tree of all trees in self, with minumum frequency of bipartition to be added to the consensus tree given by ``min_freq``. """ ta = self._get_tree_array(kwargs) return ta.consensus_tree(min_freq=min_freq, summarize_splits=summarize_splits, **kwargs)
[docs] def maximum_product_of_split_support_tree( self, include_external_splits=False, score_attr="log_product_of_split_support"): """ Return the tree with that maximizes the product of split supports, also known as the "Maximum Clade Credibility Tree" or MCCT. Parameters ---------- include_external_splits : bool If |True|, then non-internal split posteriors will be included in the score. Defaults to |False|: these are skipped. This should only make a difference when dealing with splits collected from trees of different leaf sets. Returns ------- mcct_tree : Tree Tree that maximizes the product of split supports. """ ta = self._get_tree_array({}) scores, max_score_tree_idx = ta.calculate_log_product_of_split_supports( include_external_splits=include_external_splits, ) tree = self[max_score_tree_idx] if score_attr is not None: setattr(tree, score_attr, scores[max_score_tree_idx]) return tree
[docs] def maximum_sum_of_split_support_tree( self, include_external_splits=False, score_attr="sum_of_split_support"): """ Return the tree with that maximizes the *sum* of split supports. Parameters ---------- include_external_splits : bool If |True|, then non-internal split posteriors will be included in the score. Defaults to |False|: these are skipped. This should only make a difference when dealing with splits collected from trees of different leaf sets. Returns ------- mcct_tree : Tree Tree that maximizes the sum of split supports. """ ta = self._get_tree_array({}) scores, max_score_tree_idx = ta.calculate_sum_of_split_supports( include_external_splits=include_external_splits, ) tree = self[max_score_tree_idx] if score_attr is not None: setattr(tree, score_attr, scores[max_score_tree_idx]) return tree
[docs] def frequency_of_bipartition(self, **kwargs): """ Given a bipartition specified as: - a |Bipartition| instance given the keyword 'bipartition' - a split bitmask given the keyword 'split_bitmask' - a list of |Taxon| objects given with the keyword ``taxa`` - a list of taxon labels given with the keyword ``labels`` this function returns the proportion of trees in self in which the split is found. If the tree(s) in the collection are unrooted, then the bipartition will be normalized for the comparison. """ split = None is_bipartitions_updated = kwargs.pop("is_bipartitions_updated", False) if "split_bitmask" in kwargs: split = kwargs["split_bitmask"] elif "bipartition" in kwargs: split = kwargs["bipartition"].split_bitmask elif "taxa" in kwargs or "labels" in kwargs: split = self.taxon_namespace.taxa_bitmask(**kwargs) if "taxa" in kwargs: k = len(kwargs["taxa"]) else: k = len(kwargs["labels"]) if bitprocessing.num_set_bits(split) != k: raise IndexError('Not all taxa could be mapped to bipartition (%s): %s' \ % (self.taxon_namespace.bitmask_as_bitstring(split), k)) else: raise TypeError("Need to specify one of the following keyword arguments: 'split_bitmask', 'bipartition', 'taxa', or 'labels'") unnormalized_split = split normalized_split = treemodel.Bipartition.normalize_bitmask( bitmask=split, fill_bitmask=self.taxon_namespace.all_taxa_bitmask(), lowest_relevant_bit=1) found = 0 total = 0 for tree in self: if not is_bipartitions_updated or not tree.bipartition_encoding: tree.encode_bipartitions() bipartition_encoding = set(b.split_bitmask for b in tree.bipartition_encoding) total += 1 if tree.is_unrooted and (normalized_split in bipartition_encoding): found += 1 elif (not tree.is_unrooted) and (unnormalized_split in bipartition_encoding): found += 1 try: return float(found)/total except ZeroDivisionError: return 0
[docs] def frequency_of_split(self, **kwargs): """ DEPRECATED: use 'frequency_of_bipartition()' instead. """ deprecate.dendropy_deprecation_warning( message="Deprecated since DendroPy 4: Instead of 'frequency_of_split()' use 'frequency_of_bipartition()'", stacklevel=4, ) return self.frequency_of_bipartition(**kwargs)
############################################################################### ### SplitDistribution
[docs]class SplitDistribution(taxonmodel.TaxonNamespaceAssociated): """ Collects information regarding splits over multiple trees. """ SUMMARY_STATS_FIELDNAMES = ('mean', 'median', 'sd', 'hpd95', 'quant_5_95', 'range') def __init__(self, taxon_namespace=None, ignore_edge_lengths=False, ignore_node_ages=True, use_tree_weights=True, ultrametricity_precision=constants.DEFAULT_ULTRAMETRICITY_PRECISION, is_force_max_age=False, taxon_label_age_map=None): # Taxon Namespace taxonmodel.TaxonNamespaceAssociated.__init__(self, taxon_namespace=taxon_namespace) # configuration self.ignore_edge_lengths = ignore_edge_lengths self.ignore_node_ages = ignore_node_ages self.use_tree_weights = use_tree_weights self.ultrametricity_precision = ultrametricity_precision # storage/function self.total_trees_counted = 0 self.sum_of_tree_weights = 0.0 self.tree_rooting_types_counted = set() self.split_counts = collections.defaultdict(float) self.split_edge_lengths = collections.defaultdict(list) self.split_node_ages = collections.defaultdict(list) self.is_force_max_age = is_force_max_age self.is_force_min_age = False self.taxon_label_age_map = taxon_label_age_map # secondary/derived/generated/collected data self._is_rooted = False self._split_freqs = None self._trees_counted_for_freqs = 0 self._split_edge_length_summaries = None self._split_node_age_summaries = None self._trees_counted_for_summaries = 0 # services self.tree_decorator = None ########################################################################### ### Utility
[docs] def normalize_bitmask(self, bitmask): """ "Normalizes" split, by ensuring that the least-significant bit is always 1 (used on unrooted trees to establish split identity independent of rotation). Parameters ---------- bitmask : integer Split bitmask hash to be normalized. Returns ------- h : integer Normalized split bitmask. """ return treemodel.Bipartition.normalize_bitmask( bitmask=bitmask, fill_bitmask=self.taxon_namespace.all_taxa_bitmask(), lowest_relevant_bit=1)
########################################################################### ### Configuration def _is_rooted_deprecation_warning(self): deprecate.dendropy_deprecation_warning( message="Deprecated since DendroPy 4: 'SplitDistribution.is_rooted' and 'SplitDistribution.is_unrooted' are no longer valid attributes; rooting state tracking and management is now the responsibility of client code.", stacklevel=4, ) def _get_is_rooted(self): self._is_rooted_deprecation_warning() return self._is_rooted def _set_is_rooted(self, val): self._is_rooted_deprecation_warning() self._is_rooted = val is_rooted = property(_get_is_rooted, _set_is_rooted) def _get_is_unrooted(self): self._is_rooted_deprecation_warning() return not self._is_rooted def _set_is_unrooted(self, val): self._is_rooted_deprecation_warning() self._is_rooted = not val is_unrooted = property(_get_is_unrooted, _set_is_unrooted) ########################################################################### ### Split Counting and Book-Keeping def add_split_count(self, split, count=1): self.split_counts[split] += count
[docs] def count_splits_on_tree(self, tree, is_bipartitions_updated=False, default_edge_length_value=None): """ Counts splits in this tree and add to totals. ``tree`` must be decorated with splits, and no attempt is made to normalize taxa. Parameters ---------- tree : a |Tree| object. The tree on which to count the splits. is_bipartitions_updated : bool If |False| [default], then the tree will have its splits encoded or updated. Otherwise, if |True|, then the tree is assumed to have its splits already encoded and updated. Returns -------- s : iterable of splits A list of split bitmasks from ``tree``. e : A list of edge length values from ``tree``. a : A list of node age values from ``tree``. """ assert tree.taxon_namespace is self.taxon_namespace self.total_trees_counted += 1 if not self.ignore_node_ages: if self.taxon_label_age_map: set_node_age_fn = self._set_node_age else: set_node_age_fn = None tree.calc_node_ages( ultrametricity_precision=self.ultrametricity_precision, is_force_max_age=self.is_force_max_age, is_force_min_age=self.is_force_min_age, set_node_age_fn=set_node_age_fn, ) if tree.weight is not None and self.use_tree_weights: weight_to_use = float(tree.weight) else: weight_to_use = 1.0 self.sum_of_tree_weights += weight_to_use if tree.is_rooted: self.tree_rooting_types_counted.add(True) else: self.tree_rooting_types_counted.add(False) if not is_bipartitions_updated: tree.encode_bipartitions() splits = [] edge_lengths = [] node_ages = [] for bipartition in tree.bipartition_encoding: split = bipartition.split_bitmask ## if edge is stored as an attribute, might be faster to: # edge = bipartition.edge edge = tree.bipartition_edge_map[bipartition] splits.append(split) self.split_counts[split] += weight_to_use if not self.ignore_edge_lengths: sel = self.split_edge_lengths.setdefault(split,[]) if edge.length is None: elen = default_edge_length_value else: elen = edge.length sel.append(elen) edge_lengths.append(elen) else: sel = None if not self.ignore_node_ages: sna = self.split_node_ages.setdefault(split, []) if edge.head_node is not None: nage = edge.head_node.age else: nage = None sna.append(nage) node_ages.append(nage) else: sna = None return splits, edge_lengths, node_ages
[docs] def splits_considered(self): """ Returns 4 values: total number of splits counted total *weighted* number of unique splits counted total number of non-trivial splits counted total *weighted* number of unique non-trivial splits counted """ if not self.split_counts: return 0, 0, 0, 0 num_splits = 0 num_unique_splits = 0 num_nt_splits = 0 num_nt_unique_splits = 0 taxa_mask = self.taxon_namespace.all_taxa_bitmask() for s in self.split_counts: num_unique_splits += 1 num_splits += self.split_counts[s] if not treemodel.Bipartition.is_trivial_bitmask(s, taxa_mask): num_nt_unique_splits += 1 num_nt_splits += self.split_counts[s] return num_splits, num_unique_splits, num_nt_splits, num_nt_unique_splits
[docs] def calc_freqs(self): "Forces recalculation of frequencies." self._split_freqs = {} if self.total_trees_counted == 0: for split in self.split_counts: self._split_freqs[split] = 1.0 else: normalization_weight = self.calc_normalization_weight() for split in self.split_counts: count = self.split_counts[split] self._split_freqs[split] = float(self.split_counts[split]) / normalization_weight self._trees_counted_for_freqs = self.total_trees_counted self._split_edge_length_summaries = None self._split_node_age_summaries = None return self._split_freqs
def calc_normalization_weight(self): if not self.sum_of_tree_weights: return self.total_trees_counted else: return float(self.sum_of_tree_weights) def update(self, split_dist): self.total_trees_counted += split_dist.total_trees_counted self.sum_of_tree_weights += split_dist.sum_of_tree_weights self._split_edge_length_summaries = None self._split_node_age_summaries = None self._trees_counted_for_summaries = 0 self.tree_rooting_types_counted.update(split_dist.tree_rooting_types_counted) for split in split_dist.split_counts: self.split_counts[split] += split_dist.split_counts[split] self.split_edge_lengths[split] += split_dist.split_edge_lengths[split] self.split_node_ages[split] += split_dist.split_node_ages[split] ########################################################################### ### Basic Information Access def __len__(self): return len(self.split_counts) def __iter__(self): for s in self.split_counts: yield s
[docs] def __getitem__(self, split_bitmask): """ Returns freqency of split_bitmask. """ return self._get_split_frequencies().get(split_bitmask, 0.0)
def _get_split_frequencies(self): if self._split_freqs is None or self._trees_counted_for_freqs != self.total_trees_counted: self.calc_freqs() return self._split_freqs split_frequencies = property(_get_split_frequencies) def is_mixed_rootings_counted(self): return ( (True in self.tree_rooting_types_counted) and (False in self.tree_rooting_types_counted or None in self.tree_rooting_types_counted) ) def is_all_counted_trees_rooted(self): return (True in self.tree_rooting_types_counted) and (len(self.tree_rooting_types_counted) == 1) def is_all_counted_trees_strictly_unrooted(self): return (False in self.tree_rooting_types_counted) and (len(self.tree_rooting_types_counted) == 1) def is_all_counted_trees_treated_as_unrooted(self): return True not in self.tree_rooting_types_counted ########################################################################### ### Summarization
[docs] def split_support_iter(self, tree, is_bipartitions_updated=False, include_external_splits=False, traversal_strategy="preorder", node_support_attr_name=None, edge_support_attr_name=None, ): """ Returns iterator over support values for the splits of a given tree, where the support value is given by the proportional frequency of the split in the current split distribution. Parameters ---------- tree : |Tree| The |Tree| which will be scored. is_bipartitions_updated : bool If |False| [default], then the tree will have its splits encoded or updated. Otherwise, if |True|, then the tree is assumed to have its splits already encoded and updated. include_external_splits : bool If |True|, then non-internal split posteriors will be included. If |False|, then these are skipped. This should only make a difference when dealing with splits collected from trees of different leaf sets. traversal_strategy : str One of: "preorder" or "postorder". Specfies order in which splits are visited. Returns ------- s : list of floats List of values for splits in the tree corresponding to the proportional frequency that the split is found in the current distribution. """ if traversal_strategy == "preorder": if include_external_splits: iter_fn = tree.preorder_node_iter else: iter_fn = tree.preorder_internal_node_iter elif traversal_strategy == "postorder": if include_external_splits: iter_fn = tree.postorder_node_iter else: iter_fn = tree.postorder_internal_node_iter else: raise ValueError("Traversal strategy not supported: '{}'".format(traversal_strategy)) if not is_bipartitions_updated: tree.encode_bipartitions() split_frequencies = self._get_split_frequencies() for nd in iter_fn(): split = nd.edge.split_bitmask support = split_frequencies.get(split, 0.0) yield support
def calc_split_edge_length_summaries(self): self._split_edge_length_summaries = {} for split, elens in self.split_edge_lengths.items(): if not elens: continue try: self._split_edge_length_summaries[split] = statistics.summarize(elens) except ValueError: pass return self._split_edge_length_summaries def calc_split_node_age_summaries(self): self._split_node_age_summaries = {} for split, ages in self.split_node_ages.items(): if not ages: continue try: self._split_node_age_summaries[split] = statistics.summarize(ages) except ValueError: pass return self._split_node_age_summaries def _set_node_age(self, nd): if nd.taxon is None or nd._child_nodes: return None else: return self.taxon_label_age_map.get(nd.taxon.label, 0.0) def _get_split_edge_length_summaries(self): if self._split_edge_length_summaries is None \ or self._trees_counted_for_summaries != self.total_trees_counted: self.calc_split_edge_length_summaries() return self._split_edge_length_summaries split_edge_length_summaries = property(_get_split_edge_length_summaries) def _get_split_node_age_summaries(self): if self._split_node_age_summaries is None \ or self._trees_counted_for_summaries != self.total_trees_counted: self.calc_split_node_age_summaries() return self._split_node_age_summaries split_node_age_summaries = property(_get_split_node_age_summaries)
[docs] def log_product_of_split_support_on_tree(self, tree, is_bipartitions_updated=False, include_external_splits=False, ): """ Calculates the (log) product of the support of the splits of the tree, where the support is given by the proportional frequency of the split in the current split distribution. The tree that has the highest product of split support out of a sample of trees corresponds to the "maximum credibility tree" for that sample. This can also be referred to as the "maximum clade credibility tree", though this latter term is sometimes use for the tree that has the highest *sum* of split support (see :meth:`SplitDistribution.sum_of_split_support_on_tree()`). Parameters ---------- tree : |Tree| The tree for which the score should be calculated. is_bipartitions_updated : bool If |True|, then the splits are assumed to have already been encoded and will not be updated on the trees. include_external_splits : bool If |True|, then non-internal split posteriors will be included in the score. Defaults to |False|: these are skipped. This should only make a difference when dealing with splits collected from trees of different leaf sets. Returns ------- s : numeric The log product of the support of the splits of the tree. """ log_product_of_split_support = 0.0 for split_support in self.split_support_iter( tree=tree, is_bipartitions_updated=is_bipartitions_updated, include_external_splits=include_external_splits, traversal_strategy="preorder", ): if split_support: log_product_of_split_support += math.log(split_support) return log_product_of_split_support
[docs] def sum_of_split_support_on_tree(self, tree, is_bipartitions_updated=False, include_external_splits=False, ): """ Calculates the sum of the support of the splits of the tree, where the support is given by the proportional frequency of the split in the current distribtion. Parameters ---------- tree : |Tree| The tree for which the score should be calculated. is_bipartitions_updated : bool If |True|, then the splits are assumed to have already been encoded and will not be updated on the trees. include_external_splits : bool If |True|, then non-internal split posteriors will be included in the score. Defaults to |False|: these are skipped. This should only make a difference when dealing with splits collected from trees of different leaf sets. Returns ------- s : numeric The sum of the support of the splits of the tree. """ sum_of_split_support = 0.0 for split_support in self.split_support_iter( tree=tree, is_bipartitions_updated=is_bipartitions_updated, include_external_splits=include_external_splits, traversal_strategy="preorder", ): sum_of_split_support += split_support return sum_of_split_support
[docs] def collapse_edges_with_less_than_minimum_support(self, tree, min_freq=constants.GREATER_THAN_HALF, ): """ Collapse edges on tree that have support less than indicated by ``min_freq``. """ if not tree.is_rooted and self.is_all_counted_trees_rooted(): raise ValueError("Tree is interpreted as unrooted, but split support is based on rooted trees") elif tree.is_rooted and self.is_all_counted_trees_treated_as_unrooted(): raise ValueError("Tree is interpreted as rooted, but split support is based on unrooted trees") tree.encode_bipartitions() split_frequencies = self._get_split_frequencies() to_collapse = [] for nd in tree.postorder_node_iter(): s = nd.edge.bipartition.split_bitmask if s not in split_frequencies: to_collapse.append(nd) elif split_frequencies[s] < min_freq: to_collapse.append(nd) for nd in to_collapse: nd.edge.collapse(adjust_collapsed_head_children_edge_lengths=True)
[docs] def consensus_tree(self, min_freq=constants.GREATER_THAN_HALF, is_rooted=None, summarize_splits=True, **split_summarization_kwargs ): """ Returns a consensus tree from splits in ``self``. Parameters ---------- min_freq : real The minimum frequency of a split in this distribution for it to be added to the tree. is_rooted : bool Should tree be rooted or not? If *all* trees counted for splits are explicitly rooted or unrooted, then this will default to |True| or |False|, respectively. Otherwise it defaults to |None|. \*\*split_summarization_kwargs : keyword arguments These will be passed directly to the underlying `SplitDistributionSummarizer` object. See :meth:`SplitDistributionSummarizer.configure` for options. Returns ------- t : consensus tree """ if is_rooted is None: if self.is_all_counted_trees_rooted(): is_rooted = True elif self.is_all_counted_trees_strictly_unrooted(): is_rooted = False split_frequencies = self._get_split_frequencies() to_try_to_add = [] _almost_one = lambda x: abs(x - 1.0) <= 0.0000001 for s in split_frequencies: freq = split_frequencies[s] if (min_freq is None) or (freq >= min_freq) or (_almost_one(min_freq) and _almost_one(freq)): to_try_to_add.append((freq, s)) to_try_to_add.sort(reverse=True) splits_for_tree = [i[1] for i in to_try_to_add] con_tree = treemodel.Tree.from_split_bitmasks( split_bitmasks=splits_for_tree, taxon_namespace=self.taxon_namespace, is_rooted=is_rooted) if summarize_splits: self.summarize_splits_on_tree( tree=con_tree, is_bipartitions_updated=False, **split_summarization_kwargs ) return con_tree
[docs] def summarize_splits_on_tree(self, tree, is_bipartitions_updated=False, **split_summarization_kwargs ): """ Summarizes support of splits/edges/node on tree. Parameters ---------- tree: |Tree| instance Tree to be decorated with support values. is_bipartitions_updated: bool If |True|, then bipartitions will not be recalculated. \*\*split_summarization_kwargs : keyword arguments These will be passed directly to the underlying `SplitDistributionSummarizer` object. See :meth:`SplitDistributionSummarizer.configure` for options. """ if self.taxon_namespace is not tree.taxon_namespace: raise error.TaxonNamespaceIdentityError(self, tree) if self.tree_decorator is None: self.tree_decorator = SplitDistributionSummarizer() self.tree_decorator.configure(**split_summarization_kwargs) self.tree_decorator.summarize_splits_on_tree( split_distribution=self, tree=tree, is_bipartitions_updated=is_bipartitions_updated) return tree
########################################################################### ### legacy def _get_taxon_set(self): from dendropy import taxonmodel taxon_model.taxon_set_deprecation_warning() return self.taxon_namespace def _set_taxon_set(self, v): from dendropy import taxonmodel taxon_model.taxon_set_deprecation_warning() self.taxon_namespace = v def _del_taxon_set(self): from dendropy import taxonmodel taxon_model.taxon_set_deprecation_warning() taxon_set = property(_get_taxon_set, _set_taxon_set, _del_taxon_set)
############################################################################### ### SplitDistributionSummarizer
[docs]class SplitDistributionSummarizer(object): def __init__(self, **kwargs): """ See :meth:`SplitDistributionSummarizer.configure` for configuration options. """ self.configure(**kwargs)
[docs] def configure(self, **kwargs): """ Configure rendition/mark-up. Parameters ---------- set_edge_lengths : string For each edge, set the length based on: - "support": use support values split corresponding to edge - "mean-length": mean of edge lengths for split - "median-length": median of edge lengths for split - "mean-age": such that split age is equal to mean of ages - "median-age": such that split age is equal to mean of ages - |None|: do not set edge lengths add_support_as_node_attribute: bool Adds each node's support value as an attribute of the node, "``support``". add_support_as_node_annotation: bool Adds support as a metadata annotation, "``support``". If ``add_support_as_node_attribute`` is |True|, then the value will be dynamically-bound to the value of the node's "``support``" attribute. set_support_as_node_label : bool Sets the ``label`` attribute of each node to the support value. add_node_age_summaries_as_node_attributes: bool Summarizes the distribution of the ages of each node in the following attributes: - ``age_mean`` - ``age_median`` - ``age_sd`` - ``age_hpd95`` - ``age_range`` add_node_age_summaries_as_node_annotations: bool Summarizes the distribution of the ages of each node in the following metadata annotations: - ``age_mean`` - ``age_median`` - ``age_sd`` - ``age_hpd95`` - ``age_range`` If ``add_node_age_summaries_as_node_attributes`` is |True|, then the values will be dynamically-bound to the corresponding node attributes. add_edge_length_summaries_as_edge_attributes: bool Summarizes the distribution of the lengths of each edge in the following attribtutes: - ``length_mean`` - ``length_median`` - ``length_sd`` - ``length_hpd95`` - ``length_range`` add_edge_length_summaries_as_edge_annotations: bool Summarizes the distribution of the lengths of each edge in the following metadata annotations: - ``length_mean`` - ``length_median`` - ``length_sd`` - ``length_hpd95`` - ``length_range`` If ``add_edge_length_summaries_as_edge_attributes`` is |True|, then the values will be dynamically-bound to the corresponding edge attributes. support_label_decimals: int Number of decimal places to express when rendering the support value as a string for the node label. support_as_percentages: bool Whether or not to express the support value as percentages (default is probability or proportion). minimum_edge_length : numeric All edge lengths calculated to have a value less than this will be set to this. error_on_negative_edge_lengths : bool If |True|, an inferred edge length that is less than 0 will result in a ValueError. """ self.set_edge_lengths = kwargs.pop("set_edge_lengths", None) self.add_support_as_node_attribute = kwargs.pop("add_support_as_node_attribute", True) self.add_support_as_node_annotation = kwargs.pop("add_support_as_node_annotation", True) self.set_support_as_node_label = kwargs.pop("set_support_as_node_label", None) self.add_node_age_summaries_as_node_attributes = kwargs.pop("add_node_age_summaries_as_node_attributes", True) self.add_node_age_summaries_as_node_annotations = kwargs.pop("add_node_age_summaries_as_node_annotations", True) self.add_edge_length_summaries_as_edge_attributes = kwargs.pop("add_edge_length_summaries_as_edge_attributes", True) self.add_edge_length_summaries_as_edge_annotations = kwargs.pop("add_edge_length_summaries_as_edge_annotations", True) self.support_label_decimals = kwargs.pop("support_label_decimals", 4) self.support_as_percentages = kwargs.pop("support_as_percentages", False) self.support_label_compose_fn = kwargs.pop("support_label_compose_fn", None) self.primary_fieldnames = ["support",] self.summary_stats_fieldnames = SplitDistribution.SUMMARY_STATS_FIELDNAMES self.no_data_values = { 'hpd95': [], 'quant_5_95': [], 'range': [], } self.node_age_summaries_fieldnames = list("age_{}".format(f) for f in self.summary_stats_fieldnames) self.edge_length_summaries_fieldnames = list("length_{}".format(f) for f in self.summary_stats_fieldnames) self.fieldnames = self.primary_fieldnames + self.node_age_summaries_fieldnames + self.edge_length_summaries_fieldnames for fieldname in self.fieldnames: setattr(self, "{}_attr_name".format(fieldname), kwargs.pop("{}_attr_name".format(fieldname), fieldname)) setattr(self, "{}_annotation_name".format(fieldname), kwargs.pop("{}_annotation_name".format(fieldname), fieldname)) setattr(self, "is_{}_annotation_dynamic".format(fieldname), kwargs.pop("is_{}_annotation_dynamic".format(fieldname), True)) self.minimum_edge_length = kwargs.pop("minimum_edge_length", None) self.error_on_negative_edge_lengths = kwargs.pop("error_on_negative_edge_lengths", False) if kwargs: TypeError("Unrecognized or unsupported arguments: {}".format(kwargs))
def _decorate(self, target, fieldname, value, set_attribute, set_annotation, ): attr_name = getattr(self, "{}_attr_name".format(fieldname)) annotation_name = getattr(self, "{}_annotation_name".format(fieldname)) if set_attribute: setattr(target, attr_name, value) if set_annotation: target.annotations.drop(name=annotation_name) if getattr(self, "is_{}_annotation_dynamic".format(fieldname)): target.annotations.add_bound_attribute( attr_name=attr_name, annotation_name=annotation_name, ) else: target.annotations.add_new( name=annotation_name, value=value, ) elif set_annotation: target.annotations.drop(name=annotation_name) target.annotations.add_new( name=annotation_name, value=value, ) def summarize_splits_on_tree(self, split_distribution, tree, is_bipartitions_updated=False): if split_distribution.taxon_namespace is not tree.taxon_namespace: raise error.TaxonNamespaceIdentityError(split_distribution, tree) if not is_bipartitions_updated: tree.encode_bipartitions() if self.support_label_compose_fn is not None: support_label_fn = lambda freq: self.support_label_compose_fn(freq) else: support_label_fn = lambda freq: "{:.{places}f}".format(freq, places=self.support_label_decimals) node_age_summaries = split_distribution.split_node_age_summaries edge_length_summaries = split_distribution.split_edge_length_summaries split_freqs = split_distribution.split_frequencies assert len(self.node_age_summaries_fieldnames) == len(self.summary_stats_fieldnames) for node in tree: split_bitmask = node.edge.bipartition.split_bitmask split_support = split_freqs.get(split_bitmask, 0.0) if self.support_as_percentages: split_support = split_support * 100 self._decorate( target=node, fieldname="support", value=split_support, set_attribute=self.add_support_as_node_attribute, set_annotation=self.add_support_as_node_annotation, ) if self.set_support_as_node_label: node.label = support_label_fn(split_support) if (self.add_node_age_summaries_as_node_attributes or self.add_node_age_summaries_as_node_annotations) and node_age_summaries: for fieldname, stats_fieldname in zip(self.node_age_summaries_fieldnames, self.summary_stats_fieldnames): no_data_value = self.no_data_values.get(stats_fieldname, 0.0) if not node_age_summaries or split_bitmask not in node_age_summaries: value = no_data_value else: value = node_age_summaries[split_bitmask].get(stats_fieldname, no_data_value) self._decorate( target=node, fieldname=fieldname, value=value, set_attribute=self.add_node_age_summaries_as_node_attributes, set_annotation=self.add_node_age_summaries_as_node_annotations, ) if (self.add_edge_length_summaries_as_edge_attributes or self.add_edge_length_summaries_as_edge_annotations) and edge_length_summaries: for fieldname, stats_fieldname in zip(self.edge_length_summaries_fieldnames, self.summary_stats_fieldnames): no_data_value = self.no_data_values.get(stats_fieldname, 0.0) if not edge_length_summaries or split_bitmask not in edge_length_summaries: value = no_data_value else: value = edge_length_summaries[split_bitmask].get(stats_fieldname, no_data_value) self._decorate( target=node.edge, fieldname=fieldname, value=value, set_attribute=self.add_edge_length_summaries_as_edge_attributes, set_annotation=self.add_edge_length_summaries_as_edge_annotations, ) if self.set_edge_lengths is None: pass elif self.set_edge_lengths == "keep": pass elif self.set_edge_lengths == "support": node.edge.length = split_support elif self.set_edge_lengths == "clear": edge.length = None elif self.set_edge_lengths in ("mean-age", "median-age"): if not node_age_summaries: raise ValueError("Node ages not available") if self.set_edge_lengths == "mean-age": try: node.age = node_age_summaries[split_bitmask]["mean"] except KeyError: node.age = self.no_data_values.get("mean", 0.0) elif self.set_edge_lengths == "median-age": try: node.age = node_age_summaries[split_bitmask]["median"] except KeyError: node.age = self.no_data_values.get("median", 0.0) else: raise ValueError(self.set_edge_lengths) elif self.set_edge_lengths in ("mean-length", "median-length"): if not edge_length_summaries: raise ValueError("Edge lengths not available") if self.set_edge_lengths == "mean-length": try: node.edge.length = edge_length_summaries[split_bitmask]["mean"] except KeyError: node.edge.length = self.no_data_values.get("mean", 0.0) elif self.set_edge_lengths == "median-length": try: node.edge.length = edge_length_summaries[split_bitmask]["median"] except KeyError: node.edge.length = self.no_data_values.get("median", 0.0) else: raise ValueError(self.set_edge_lengths) if self.minimum_edge_length is not None and edge.length < self.minimum_edge_length: edge.length = self.minimum_edge_length else: raise ValueError(self.set_edge_lengths) if self.set_edge_lengths in ("mean-age", "median-age"): tree.set_edge_lengths_from_node_ages( minimum_edge_length=self.minimum_edge_length, error_on_negative_edge_lengths=self.error_on_negative_edge_lengths) elif self.set_edge_lengths not in ("keep", "clear", None) and self.minimum_edge_length is not None: for node in tree: if node.edge.length is None: node.edge.length = self.minimum_edge_length elif node.edge.length < self.minimum_edge_length: node.edge.length = self.minimum_edge_length return tree
############################################################################### ### TreeArray
[docs]class TreeArray( taxonmodel.TaxonNamespaceAssociated, basemodel.MultiReadable, ): """ High-performance collection of tree structures. Storage of minimal tree structural information as represented by toplogy and edge lengths, minimizing memory and processing time. This class stores trees as collections of splits and edge lengths. All other information, such as labels, metadata annotations, etc. will be discarded. A full |Tree| instance can be reconstructed as needed from the structural information stored by this class, at the cost of computation time. """ class IncompatibleTreeArrayUpdate(Exception): pass class IncompatibleRootingTreeArrayUpdate(IncompatibleTreeArrayUpdate): pass class IncompatibleEdgeLengthsTreeArrayUpdate(IncompatibleTreeArrayUpdate): pass class IncompatibleNodeAgesTreeArrayUpdate(IncompatibleTreeArrayUpdate): pass class IncompatibleTreeWeightsTreeArrayUpdate(IncompatibleTreeArrayUpdate): pass ############################################################################## ## Factory Function @classmethod def from_tree_list(cls, trees, is_rooted_trees=None, ignore_edge_lengths=False, ignore_node_ages=True, use_tree_weights=True, ultrametricity_precision=constants.DEFAULT_ULTRAMETRICITY_PRECISION, is_force_max_age=None, taxon_label_age_map=None, is_bipartitions_updated=False, ): taxon_namespace = trees.taxon_namespace ta = cls( taxon_namespace=taxon_namespace, is_rooted_trees=is_rooted_trees, ignore_edge_lengths=ignore_edge_lengths, ignore_node_ages=ignore_node_ages, use_tree_weights=use_tree_weights, ultrametricity_precision=ultrametricity_precision, is_force_max_age=is_force_max_age, taxon_label_age_map=taxon_label_age_map, ) ta.add_trees( trees=trees, is_bipartitions_updated=is_bipartitions_updated) return ta ############################################################################## ## Life-Cycle def __init__(self, taxon_namespace=None, is_rooted_trees=None, ignore_edge_lengths=False, ignore_node_ages=True, use_tree_weights=True, ultrametricity_precision=constants.DEFAULT_ULTRAMETRICITY_PRECISION, is_force_max_age=None, taxon_label_age_map=None, ): """ Parameters ---------- taxon_namespace : |TaxonNamespace| The operational taxonomic unit concept namespace to manage taxon references. is_rooted_trees : bool If not set, then it will be set based on the rooting state of the first tree added. If |True|, then trying to add an unrooted tree will result in an error. If |False|, then trying to add a rooted tree will result in an error. ignore_edge_lengths : bool If |True|, then edge lengths of splits will not be stored. If |False|, then edge lengths will be stored. ignore_node_ages : bool If |True|, then node ages of splits will not be stored. If |False|, then node ages will be stored. use_tree_weights : bool If |False|, then tree weights will not be used to weight splits. """ taxonmodel.TaxonNamespaceAssociated.__init__(self, taxon_namespace=taxon_namespace) # Configuration self._is_rooted_trees = is_rooted_trees self.ignore_edge_lengths = ignore_edge_lengths self.ignore_node_ages = ignore_node_ages self.use_tree_weights = use_tree_weights self.default_edge_length_value = 0 # edge.length of |None| gets this value self.tree_type = treemodel.Tree self.taxon_label_age_map = taxon_label_age_map # Storage self._tree_split_bitmasks = [] self._tree_edge_lengths = [] self._tree_leafset_bitmasks = [] self._tree_weights = [] self._split_distribution = SplitDistribution( taxon_namespace=self.taxon_namespace, ignore_edge_lengths=self.ignore_edge_lengths, ignore_node_ages=self.ignore_node_ages, ultrametricity_precision=ultrametricity_precision, is_force_max_age=is_force_max_age, taxon_label_age_map=self.taxon_label_age_map, ) ############################################################################## ## Book-Keeping def _get_is_rooted_trees(self): return self._is_rooted_trees is_rooted_trees = property(_get_is_rooted_trees) def _get_split_distribution(self): return self._split_distribution split_distribution = property(_get_split_distribution) def validate_rooting(self, rooting_of_other): if self._is_rooted_trees is None: self._is_rooted_trees = rooting_of_other elif self._is_rooted_trees != rooting_of_other: if self._is_rooted_trees: ta = "rooted" t = "unrooted" else: ta = "unrooted" t = "rooted" raise error.MixedRootingError("Cannot add {tree_rooting} tree to TreeArray with {tree_array_rooting} trees".format( tree_rooting=t, tree_array_rooting=ta)) ############################################################################## ## Updating from Another TreeArray def update(self, other): if len(self) > 0: # self.validate_rooting(other._is_rooted_trees) if self._is_rooted_trees is not other._is_rooted_trees: raise TreeArray.IncompatibleRootingTreeArrayUpdate("Updating from incompatible TreeArray: 'is_rooted_trees' should be '{}', but is instead '{}'".format(other._is_rooted_trees, self._is_rooted_trees, )) if self.ignore_edge_lengths is not other.ignore_edge_lengths: raise TreeArray.IncompatibleEdgeLengthsTreeArrayUpdate("Updating from incompatible TreeArray: 'ignore_edge_lengths' is not: {} ".format(other.ignore_edge_lengths, self.ignore_edge_lengths, )) if self.ignore_node_ages is not other.ignore_node_ages: raise TreeArray.IncompatibleNodeAgesTreeArrayUpdate("Updating from incompatible TreeArray: 'ignore_node_ages' should be '{}', but is instead '{}'".format(other.ignore_node_ages, self.ignore_node_ages)) if self.use_tree_weights is not other.use_tree_weights: raise TreeArray.IncompatibleTreeWeightsTreeArrayUpdate("Updating from incompatible TreeArray: 'use_tree_weights' should be '{}', but is instead '{}'".format(other.use_tree_weights, self.use_tree_weights)) else: self._is_rooted_trees = other._is_rooted_trees self.ignore_edge_lengths = other.ignore_edge_lengths self.ignore_node_ages = other.ignore_node_ages self.use_tree_weights = other.use_tree_weights self._tree_split_bitmasks.extend(other._tree_split_bitmasks) self._tree_edge_lengths.extend(other._tree_edge_lengths) self._tree_leafset_bitmasks.extend(other._tree_leafset_bitmasks) self._tree_weights.extend(other._tree_weights) self._split_distribution.update(other._split_distribution) ############################################################################## ## Fundamental Tree Accession
[docs] def add_tree(self, tree, is_bipartitions_updated=False, index=None): """ Adds the structure represented by a |Tree| instance to the collection. Parameters ---------- tree : |Tree| A |Tree| instance. This must have the same rooting state as all the other trees accessioned into this collection as well as that of ``self.is_rooted_trees``. is_bipartitions_updated : bool If |False| [default], then the tree will have its splits encoded or updated. Otherwise, if |True|, then the tree is assumed to have its splits already encoded and updated. index : integer Insert before index. Returns ------- index : int The index of the accession. s : iterable of splits A list of split bitmasks from ``tree``. e : A list of edge length values from ``tree``. """ if self.taxon_namespace is not tree.taxon_namespace: raise error.TaxonNamespaceIdentityError(self, tree) self.validate_rooting(tree.is_rooted) splits, edge_lengths, node_ages = self._split_distribution.count_splits_on_tree( tree=tree, is_bipartitions_updated=is_bipartitions_updated, default_edge_length_value=self.default_edge_length_value) # pre-process splits splits = tuple(splits) # pre-process edge lengths if self.ignore_edge_lengths: # edge_lengths = tuple( [None] * len(splits) ) edge_lengths = tuple( None for x in range(len(splits)) ) else: assert len(splits) == len(edge_lengths), "Unequal vectors:\n Splits: {}\n Edges: {}\n".format(splits, edge_lengths) edge_lengths = tuple(edge_lengths) # pre-process weights if tree.weight is not None and self.use_tree_weights: weight_to_use = float(tree.weight) else: weight_to_use = 1.0 # accession info if index is None: index = len(self._tree_split_bitmasks) self._tree_split_bitmasks.append(splits) self._tree_leafset_bitmasks.append(tree.seed_node.edge.bipartition.leafset_bitmask) self._tree_edge_lengths.append(edge_lengths) self._tree_weights.append(weight_to_use) else: self._tree_split_bitmasks.insert(index, splits) self._tree_leafset_bitmasks.insert(index, tree.seed_node.edge.bipartition.leafset_bitmask) self._tree_edge_lengths.insert(index, edge_lengths) self._tree_weights.insert(index, weight_to_use) return index, splits, edge_lengths, weight_to_use
[docs] def add_trees(self, trees, is_bipartitions_updated=False): """ Adds multiple structures represneted by an iterator over or iterable of |Tree| instances to the collection. Parameters ---------- trees : iterator over or iterable of |Tree| instances An iterator over or iterable of |Tree| instances. Thess must have the same rooting state as all the other trees accessioned into this collection as well as that of ``self.is_rooted_trees``. is_bipartitions_updated : bool If |False| [default], then the tree will have its splits encoded or updated. Otherwise, if |True|, then the tree is assumed to have its splits already encoded and updated. """ for tree in trees: self.add_tree(tree, is_bipartitions_updated=is_bipartitions_updated)
############################################################################## ## I/O
[docs] def read_from_files(self, files, schema, **kwargs): """ Adds multiple structures from one or more external file sources to the collection. Parameters ---------- files : iterable of strings and/or file objects A list or some other iterable of file paths or file-like objects (string elements will be assumed to be paths to files, while all other types of elements will be assumed to be file-like objects opened for reading). schema : string The data format of the source. E.g., "nexus", "newick", "nexml". \*\*kwargs : keyword arguments These will be passed directly to the underlying schema-specific reader implementation. """ if "taxon_namespace" in kwargs: if kwargs["taxon_namespace"] is not self.taxon_namespace: raise ValueError("TaxonNamespace object passed as keyword argument is not the same as self's TaxonNamespace reference") kwargs.pop("taxon_namespace") target_tree_offset = kwargs.pop("tree_offset", 0) tree_yielder = self.tree_type.yield_from_files( files=files, schema=schema, taxon_namespace=self.taxon_namespace, **kwargs) current_source_index = None current_tree_offset = None for tree_idx, tree in enumerate(tree_yielder): current_yielder_index = tree_yielder.current_file_index if current_source_index != current_yielder_index: current_source_index = current_yielder_index current_tree_offset = 0 if current_tree_offset >= target_tree_offset: self.add_tree(tree=tree, is_bipartitions_updated=False) current_tree_offset += 1
def _parse_and_add_from_stream(self, stream, schema, **kwargs): cur_size = len(self._tree_split_bitmasks) self.read_from_files(files=[stream], schema=schema, **kwargs) new_size = len(self._tree_split_bitmasks) return new_size - cur_size
[docs] def read(self, **kwargs): """ Add |Tree| objects to existing |TreeList| from data source providing one or more collections of trees. **Mandatory Source-Specification Keyword Argument (Exactly One Required):** - **file** (*file*) -- File or file-like object of data opened for reading. - **path** (*str*) -- Path to file of data. - **url** (*str*) -- URL of data. - **data** (*str*) -- Data given directly. **Mandatory Schema-Specification Keyword Argument:** - **schema** (*str*) -- Identifier of format of data given by the "``file``", "``path``", "``data``", or "``url``" argument specified above: ":doc:`newick </schemas/newick>`", ":doc:`nexus </schemas/nexus>`", or ":doc:`nexml </schemas/nexml>`". See "|Schemas|" for more details. **Optional General Keyword Arguments:** - **collection_offset** (*int*) -- 0-based index of tree block or collection in source to be parsed. If not specified then the first collection (offset = 0) is assumed. - **tree_offset** (*int*) -- 0-based index of first tree within the collection specified by ``collection_offset`` to be parsed (i.e., skipping the first ``tree_offset`` trees). If not specified, then the first tree (offset = 0) is assumed (i.e., no trees within the specified collection will be skipped). Use this to specify, e.g. a burn-in. - **ignore_unrecognized_keyword_arguments** (*bool*) -- If |True|, then unsupported or unrecognized keyword arguments will not result in an error. Default is |False|: unsupported keyword arguments will result in an error. **Optional Schema-Specific Keyword Arguments:** These provide control over how the data is interpreted and processed, and supported argument names and values depend on the schema as specified by the value passed as the "``schema``" argument. See "|Schemas|" for more details. **Examples:** :: tree_array = dendropy.TreeArray() tree_array.read( file=open('treefile.tre', 'rU'), schema="newick", tree_offset=100) tree_array.read( path='sometrees.nexus', schema="nexus", collection_offset=2, tree_offset=100) tree_array.read( data="((A,B),(C,D));((A,C),(B,D));", schema="newick") tree_array.read( url="http://api.opentreeoflife.org/v2/study/pg_1144/tree/tree2324.nex", schema="nexus") """ return basemodel.MultiReadable._read_from(self, **kwargs)
############################################################################## ## Container (List) Interface
[docs] def append(tree, is_bipartitions_updated=False): """ Adds a |Tree| instance to the collection before position given by ``index``. Parameters ---------- tree : |Tree| A |Tree| instance. This must have the same rooting state as all the other trees accessioned into this collection as well as that of ``self.is_rooted_trees``. is_bipartitions_updated : bool If |False| [default], then the tree will have its splits encoded or updated. Otherwise, if |True|, then the tree is assumed to have its splits already encoded and updated. """ return self.add_tree(tree=tree, is_bipartitions_updated=is_bipartitions_updated)
[docs] def insert(index, tree, is_bipartitions_updated=False): """ Adds a |Tree| instance to the collection before position given by ``index``. Parameters ---------- index : integer Insert before index. tree : |Tree| A |Tree| instance. This must have the same rooting state as all the other trees accessioned into this collection as well as that of ``self.is_rooted_trees``. is_bipartitions_updated : bool If |False| [default], then the tree will have its splits encoded or updated. Otherwise, if |True|, then the tree is assumed to have its splits already encoded and updated. Returns ------- index : int The index of the accession. s : iterable of splits A list of split bitmasks from ``tree``. e : A list of edge length values ``tree``. """ return self.add_tree(tree=tree, is_bipartitions_updated=is_bipartitions_updated, index=index)
[docs] def extend(self, tree_array): """ Accession of data from ``tree_array`` to self. Parameters ---------- tree_array : |TreeArray| A |TreeArray| instance from which to add data. """ assert self.taxon_namespace is tree_array.taxon_namespace assert self._is_rooted_trees is tree_array._is_rooted_trees assert self.ignore_edge_lengths is tree_array.ignore_edge_lengths assert self.ignore_node_ages is tree_array.ignore_node_ages assert self.use_tree_weights is tree_array.use_tree_weights self._tree_split_bitmasks.extend(tree_array._tree_split_bitmasks) self._tree_edge_lengths.extend(tree_array._tree_edge_lengths) self._tree_weights.extend(other._tree_weights) self._split_distribution.update(tree_array._split_distribution) return self
[docs] def __iadd__(self, tree_array): """ Accession of data from ``tree_array`` to self. Parameters ---------- tree_array : |TreeArray| A |TreeArray| instance from which to add data. """ return self.extend(tree_array)
[docs] def __add__(self, other): """ Creates and returns new |TreeArray|. Parameters ---------- other : iterable of |Tree| objects Returns ------- tlist : |TreeArray| object |TreeArray| object containing clones of |Tree| objects in ``self`` and ``other``. """ ta = TreeArray( taxon_namespace=self.taxon_namespace, is_rooted_trees=self._is_rooted_trees, ignore_edge_lengths=self.ignore_edge_lengths, ignore_node_ages=self.ignore_node_ages, use_tree_weights=self.use_tree_weights, ultrametricity_precision=self._split_distribution.ultrametricity_precision, ) ta.default_edge_length_value = self.default_edge_length_value ta.tree_type = self.tree_type ta += self ta += other return ta
def __contains__(self, splits): # expensive!! return tuple(splits) in self._tree_split_bitmasks def __delitem__(self, index): raise NotImplementedError # expensive!! # tree_split_bitmasks = self._trees_splits[index] ### TODO: remove this "tree" from underlying splits distribution # for split in tree_split_bitmasks: # self._split_distribution.split_counts[split] -= 1 # etc. # becomes complicated because tree weights need to be updated etc. # del self._tree_split_bitmasks[index] # del self._tree_edge_lengths[index] # return
[docs] def __iter__(self): """ Yields pairs of (split, edge_length) from the store. """ for split, edge_length in zip(self._tree_split_bitmasks, self._tree_edge_lengths): yield split, edge_length
def __reversed__(self): raise NotImplementedError def __len__(self): return len(self._tree_split_bitmasks) def __getitem__(self, index): raise NotImplementedError # """ # Returns a pair of tuples, ( (splits...), (lengths...) ), corresponding # to the "tree" at ``index``. # """ # return self._tree_split_bitmasks[index], self._tree_edge_lengths[index] def __setitem__(self, index, value): raise NotImplementedError def clear(self): raise NotImplementedError self._tree_split_bitmasks = [] self._tree_edge_lengths = [] self._tree_leafset_bitmasks = [] self._split_distribution.clear() def index(self, splits): raise NotImplementedError return self._tree_split_bitmasks.index(splits) def pop(self, index=-1): raise NotImplementedError def remove(self, tree): raise NotImplementedError def reverse(self): raise NotImplementedError def sort(self, key=None, reverse=False): raise NotImplementedError ############################################################################## ## Accessors/Settors
[docs] def get_split_bitmask_and_edge_tuple(self, index): """ Returns a pair of tuples, ( (splits...), (lengths...) ), corresponding to the "tree" at ``index``. """ return self._tree_split_bitmasks[index], self._tree_edge_lengths[index]
############################################################################## ## Calculations
[docs] def calculate_log_product_of_split_supports(self, include_external_splits=False, ): """ Calculates the log product of split support for each of the trees in the collection. Parameters ---------- include_external_splits : bool If |True|, then non-internal split posteriors will be included in the score. Defaults to |False|: these are skipped. This should only make a difference when dealing with splits collected from trees of different leaf sets. Returns ------- s : tuple(list[numeric], integer) Returns a tuple, with the first element being the list of scores and the second being the index of the highest score. The element order corresponds to the trees accessioned in the collection. """ assert len(self._tree_leafset_bitmasks) == len(self._tree_split_bitmasks) scores = [] max_score = None max_score_tree_idx = None split_frequencies = self._split_distribution.split_frequencies for tree_idx, (tree_leafset_bitmask, split_bitmasks) in enumerate(zip(self._tree_leafset_bitmasks, self._tree_split_bitmasks)): log_product_of_split_support = 0.0 for split_bitmask in split_bitmasks: if (include_external_splits or split_bitmask == tree_leafset_bitmask # count root edge (following BEAST) or not treemodel.Bipartition.is_trivial_bitmask(split_bitmask, tree_leafset_bitmask) ): split_support = split_frequencies.get(split_bitmask, 0.0) if split_support: log_product_of_split_support += math.log(split_support) if max_score is None or max_score < log_product_of_split_support: max_score = log_product_of_split_support max_score_tree_idx = tree_idx scores.append(log_product_of_split_support) return scores, max_score_tree_idx
[docs] def maximum_product_of_split_support_tree(self, include_external_splits=False, summarize_splits=True, **split_summarization_kwargs ): """ Return the tree with that maximizes the product of split supports, also known as the "Maximum Clade Credibility Tree" or MCCT. Parameters ---------- include_external_splits : bool If |True|, then non-internal split posteriors will be included in the score. Defaults to |False|: these are skipped. This should only make a difference when dealing with splits collected from trees of different leaf sets. Returns ------- mcct_tree : Tree Tree that maximizes the product of split supports. """ scores, max_score_tree_idx = self.calculate_log_product_of_split_supports( include_external_splits=include_external_splits, ) tree = self.restore_tree( index=max_score_tree_idx, **split_summarization_kwargs) tree.log_product_of_split_support = scores[max_score_tree_idx] if summarize_splits: self._split_distribution.summarize_splits_on_tree( tree=tree, is_bipartitions_updated=True, **split_summarization_kwargs ) return tree
[docs] def calculate_sum_of_split_supports(self, include_external_splits=False, ): """ Calculates the *sum* of split support for all trees in the collection. Parameters ---------- include_external_splits : bool If |True|, then non-internal split posteriors will be included in the score. Defaults to |False|: these are skipped. This should only make a difference when dealing with splits collected from trees of different leaf sets. Returns ------- s : tuple(list[numeric], integer) Returns a tuple, with the first element being the list of scores and the second being the index of the highest score. The element order corresponds to the trees accessioned in the collection. """ assert len(self._tree_leafset_bitmasks) == len(self._tree_split_bitmasks) scores = [] max_score = None max_score_tree_idx = None split_frequencies = self._split_distribution.split_frequencies for tree_idx, (tree_leafset_bitmask, split_bitmasks) in enumerate(zip(self._tree_leafset_bitmasks, self._tree_split_bitmasks)): sum_of_support = 0.0 for split_bitmask in split_bitmasks: if (include_external_splits or split_bitmask == tree_leafset_bitmask # count root edge (following BEAST) or not treemodel.Bipartition.is_trivial_bitmask(split_bitmask, tree_leafset_bitmask) ): split_support = split_frequencies.get(split_bitmask, 0.0) sum_of_support += split_support if max_score is None or max_score < sum_of_support: max_score = sum_of_support max_score_tree_idx = tree_idx scores.append(sum_of_support) return scores, max_score_tree_idx
[docs] def maximum_sum_of_split_support_tree(self, include_external_splits=False, summarize_splits=True, **split_summarization_kwargs ): """ Return the tree with that maximizes the *sum* of split supports. Parameters ---------- include_external_splits : bool If |True|, then non-internal split posteriors will be included in the score. Defaults to |False|: these are skipped. This should only make a difference when dealing with splits collected from trees of different leaf sets. Returns ------- mst_tree : Tree Tree that maximizes the sum of split supports. """ scores, max_score_tree_idx = self.calculate_sum_of_split_supports( include_external_splits=include_external_splits, ) tree = self.restore_tree( index=max_score_tree_idx, **split_summarization_kwargs ) tree.sum_of_split_support = scores[max_score_tree_idx] if summarize_splits: self._split_distribution.summarize_splits_on_tree( tree=tree, is_bipartitions_updated=True, **split_summarization_kwargs ) return tree
def collapse_edges_with_less_than_minimum_support(self, tree, min_freq=constants.GREATER_THAN_HALF, ): return self.split_distribution.collapse_edges_with_less_than_minimum_support( tree=tree, min_freq=min_freq)
[docs] def consensus_tree(self, min_freq=constants.GREATER_THAN_HALF, summarize_splits=True, **split_summarization_kwargs ): """ Returns a consensus tree from splits in ``self``. Parameters ---------- min_freq : real The minimum frequency of a split in this distribution for it to be added to the tree. is_rooted : bool Should tree be rooted or not? If *all* trees counted for splits are explicitly rooted or unrooted, then this will default to |True| or |False|, respectively. Otherwise it defaults to |None|. \*\*split_summarization_kwargs : keyword arguments These will be passed directly to the underlying `SplitDistributionSummarizer` object. See :meth:`SplitDistributionSummarizer.configure` for options. Returns ------- t : consensus tree """ tree = self._split_distribution.consensus_tree( min_freq=min_freq, is_rooted=self.is_rooted_trees, summarize_splits=summarize_splits, **split_summarization_kwargs ) # return self._split_distribution.consensus_tree(*args, **kwargs) return tree
############################################################################## ## Mapping of Split Support def summarize_splits_on_tree(self, tree, is_bipartitions_updated=False, **kwargs): if self.taxon_namespace is not tree.taxon_namespace: raise error.TaxonNamespaceIdentityError(self, tree) self._split_distribution.summarize_splits_on_tree( tree=tree, is_bipartitions_updated=is_bipartitions_updated, **kwargs ) ############################################################################## ## Tree Reconstructions def restore_tree(self, index, summarize_splits_on_tree=False, **split_summarization_kwargs ): split_bitmasks = self._tree_split_bitmasks[index] if self.ignore_edge_lengths: split_edge_lengths = None else: assert len(self._tree_split_bitmasks) == len(self._tree_edge_lengths) edge_lengths = self._tree_edge_lengths[index] split_edge_lengths = dict(zip(split_bitmasks, edge_lengths)) tree = self.tree_type.from_split_bitmasks( split_bitmasks=split_bitmasks, taxon_namespace=self.taxon_namespace, is_rooted=self._is_rooted_trees, split_edge_lengths=split_edge_lengths, ) # if update_bipartitions: # tree.encode_bipartitions() if summarize_splits_on_tree: split_summarization_kwargs["is_bipartitions_updated"] = True self._split_distribution.summarize_splits_on_tree( tree=tree, **split_summarization_kwargs) return tree ############################################################################## ## Topology Frequencies
[docs] def split_bitmask_set_frequencies(self): """ Returns a dictionary with keys being sets of split bitmasks and values being the frequency of occurrence of trees represented by those split bitmask sets in the collection. """ split_bitmask_set_count_map = collections.Counter() assert len(self._tree_split_bitmasks) == len(self._tree_weights) for split_bitmask_set, weight in zip(self._tree_split_bitmasks, self._tree_weights): split_bitmask_set_count_map[frozenset(split_bitmask_set)] += (1.0 * weight) split_bitmask_set_freqs = {} normalization_weight = self._split_distribution.calc_normalization_weight() # print("===> {}".format(normalization_weight)) for split_bitmask_set in split_bitmask_set_count_map: split_bitmask_set_freqs[split_bitmask_set] = split_bitmask_set_count_map[split_bitmask_set] / normalization_weight return split_bitmask_set_freqs
[docs] def bipartition_encoding_frequencies(self): """ Returns a dictionary with keys being bipartition encodings of trees (as ``frozenset`` collections of |Bipartition| objects) and values the frequency of occurrence of trees represented by that encoding in the collection. """ # split_bitmask_set_freqs = self.split_bitmask_set_frequencies() # bipartition_encoding_freqs = {} # for split_bitmask_set, freq in split_bitmask_set_freqs.items(): # bipartition_encoding = [] # inferred_leafset = max(split_bitmask_set) # for split_bitmask in split_bitmask_set: # bipartition = treemodel.Bipartition( # bitmask=split_bitmask, # tree_leafset_bitmask=inferred_leafset, # is_rooted=self._is_rooted_trees, # is_mutable=False, # compile_bipartition=True, # ) # bipartition_encoding.append(bipartition) # bipartition_encoding_freqs[frozenset(bipartition_encoding)] = freq # return bipartition_encoding_freqs bipartition_encoding_freqs = {} topologies = self.topologies() for tree in topologies: bipartition_encoding_freqs[ frozenset(tree.encode_bipartitions()) ] = tree.frequency return bipartition_encoding_freqs
[docs] def topologies(self, sort_descending=None, frequency_attr_name="frequency", frequency_annotation_name="frequency", ): """ Returns a |TreeList| instance containing the reconstructed tree topologies (i.e. |Tree| instances with no edge weights) in the collection, with the frequency added as an attributed. Parameters ---------- sort_descending : bool If |True|, then topologies will be sorted in *descending* frequency order (i.e., topologies with the highest frequencies will be listed first). If |False|, then they will be sorted in *ascending* frequency. If |None| (default), then they will not be sorted. frequency_attr_name : str Name of attribute to add to each |Tree| representing the frequency of that topology in the collection. If |None| then the attribute will not be added. frequency_annotation_name : str Name of annotation to add to the annotations of each |Tree|, representing the frequency of that topology in the collection. The value of this annotation will be dynamically-bound to the attribute specified by ``frequency_attr_name`` unless that is |None|. If ``frequency_annotation_name`` is |None| then the annotation will not be added. """ if sort_descending is not None and frequency_attr_name is None: raise ValueError("Attribute needs to be set on topologies to enable sorting") split_bitmask_set_freqs = self.split_bitmask_set_frequencies() topologies = TreeList(taxon_namespace=self.taxon_namespace) for split_bitmask_set, freq in split_bitmask_set_freqs.items(): tree = self.tree_type.from_split_bitmasks( split_bitmasks=split_bitmask_set, taxon_namespace=self.taxon_namespace, is_rooted=self._is_rooted_trees, ) if frequency_attr_name is not None: setattr(tree, frequency_attr_name, freq) if frequency_annotation_name is not None: tree.annotations.add_bound_attribute( attr_name=frequency_attr_name, annotation_name=frequency_annotation_name, ) else: tree.annotations.add_new( frequency_annotation_name, freq, ) topologies.append(tree) if sort_descending is not None: topologies.sort(key=lambda t: getattr(t, frequency_attr_name), reverse=sort_descending) return topologies